a2 United States Patent

Barber et al.

US009058344B2

(10) Patent No.: US 9,058,344 B2
(45) Date of Patent: Jun. 16, 2015

(54) SUPPORTING FLEXIBLE TYPES IN A (58) Field of Classification Search
DATABASE CPC ..ccoovvreriennn GO6F 17/30289; GOGF 17/30292;
GOG6F 17/30294; GOGF 17/30312; GO6F
(71) Applicant: International Business Machines 17/30315; GOGF 17/30595
Corporation, Armonk, NY (US) USPC ..o 707/790, 791, 801, 802, 803
See application file for complete search history.
(72) Inventors: Ronald J. Barber, San Jose, CA (US); .
Guy M. Lohman, San Jose, CA (US); (56) References Cited
Vijayshankar Raman, Sunnyvale, CA U.S. PATENT DOCUMENTS
(US); Richard S. Sidle, Mountain View,
CA (US) 6,134,542 A 10/2000 Rustige
7,672,966 B2 3/2010 Molnar et al.
. . . . 2010/0169158 Al* 7/2010 Agarwaletal. 705/10
(73) Assignee: International Business Machines 2010/0205227 Al* 82010 Weissman etal. 707/803
Corporation, Armonk, NY (US) 2011/0196866 Al 82011 Cooper
2012/0041986 Al 2/2012 Weissman et al.
(*) Notice: Subject. to any disclaimer,. the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 206 days. Primary Examiner — Hares Jami
(74) Attorney, Agent, or Firm — Ference & Associates LL.C
(21) Appl. No.: 13/755,695 (57) ABSTRACT
. Providing database support. A first group of data are received.
22) Filed: Jan. 31, 2013 : : >
(22) File 2% the first group of data being expressed in a first format, and a
. .. second group of data are received, the second group of data
(65) Prior Publication Data being expressed in a second format, the second format being
US 2014/0214900 A1 Jul. 31, 2014 different from the first format. The first and second groups of
data are merged, and are represented in at least one common
(51) Int.CL column. Such representing includes: maintaining the first and
GO6F 17/30 (2006.01) second formats; and providing a tuple map which provides
(52) US.CL reference to the first and second formats.
CPC ..o, GO6F 17/30294 (2013.01) 16 Claims, 5 Drawing Sheets
460\
PROVIDE TUPLE MAP
{ FINISH WHICH PROVIDES
{ START REFERENCE TO FIRST
\ S e AND SECOND FORMATS
450
458
v
RECEIVE FIRST MAINTAIN FIRST
GROUP OF DATA AND SECOND
(FIRST FORMAT) FORMATS
452 454 456 *
kA / :
RECEIVE SECOND GROUP MERGE FIRST AND REPRESENT FIRST AND
OF DATA (SECOND . SECOND GROUPS » SECOND GROUPS IN
FIRST FORMAT) COMMON COLUMN

US 9,058,344 B2

Sheet 1 of 5

Jun. 16, 2015

U.S. Patent

T 'OSId

SOT POT €0t

LOT

US 9,058,344 B2

Sheet 2 of 5

Jun. 16, 2015

U.S. Patent

8

0¢
/ 00°0F ‘0°2- ‘20°26-LE’LE “LEVE ‘L)L LY “2EET ‘T

\

US 9,058,344 B2

Sheet 3 of 5

Jun. 16, 2015

U.S. Patent

€ 'Old

€ze

| ¥4

61¢&

LTE

00°0v £CP1°0v9
[Atr4 0621°0¢
1€ 1€ 00¢
LE7PE 649
[43% X4 001
Ly 641
[006
0z TZE1°008
7 Z2€T00c

g uwinjod

N,

v cE:_ou

US 9,058,344 B2

Sheet 4 of 5

Jun. 16, 2015

U.S. Patent

NWNT0D NOWWOD3
ANQO 1Sva1 LY
NI SdNOYH ANOD3S
ANV LSYId INISTHdIY

[

v "OlId

P

S1VINYOAL
ANODJS ANV
1SHId NIVINIVIA

4

S1VINYO4 ONOD3S ANV
LS¥Id OL AONIUI43Y
S3AINOUd HOIHM
dVIW 27dNL 3dIAOYd

osv

8sP

viva 40
SdNOYD ANOD3IS
ANV LSYId 394N

A

/

12514

09t

HSINIH

TN

1417

0st

(LYINYO4 1SYId
WOYH INTYIAHAIA ‘LYINYOL
anNoD3s) viva 40
dNOYD ANODIS FAIFDIY

—

(LVIWNYHO4 1SYId)
v1ivd 40 dNouoD
18414 IAIED3Y

e

RR< AR

US 9,058,344 B2

Sheet 5 of 5

Jun. 16, 2015

U.S. Patent

S "'Old

SADIAIC
TYNYILXT
A
hae
Y m
UILAVAY HAOMLIN Amm_u%wmg > AV1dSIa
5 m
02 AN |
2z ¥
T IIIIIIIIIIIITmTT e " s ”
“ LY > 81 "
m E CE ; v ;
m 0% / m LINN m
m \\l\lJ > IJHIYD m ONISS3o0Ud m
; WIALSAS " "
i | I9VHOLS |« | 9T m
m Q <AL m m
” | | :
" ngd XIOWIW 0€ ; m
,,,,,,,,,,,,,,,,,,,,, T m
8¢ YIAYTS/WALSAS WILNdWOD 521
lll 4

US 9,058,344 B2

1
SUPPORTING FLEXIBLE TYPES IN A
DATABASE

BACKGROUND

Conventional information management systems can be
highly structured and schema-heavy, and efforts have been
made to render them more semi-structured. While there does
happen to exist a large body of work on XML (extensible
markup language) and semi-structured information manage-
ment systems, such systems still severely lag their structured
counterparts in performance.

BRIEF SUMMARY

In summary, one aspect of the invention provides a method
comprising: receiving a first group of data, the first group of
data being expressed in a first format; receiving a second
group of data, the second group of data being expressed in a
second format, the second format being different from the
first format; merging the first and second groups of data; and
representing the first and second groups of data in at least one
common column; said representing comprising: maintaining
the first and second formats; and providing a tuple map which
provides reference to the first and second formats.

Another aspect of the invention provides an apparatus
comprising: at least one processor; and a computer readable
storage medium having computer readable program code
embodied therewith and executable by the at least one pro-
cessor, the computer readable program code comprising:
computer readable program code configured to receive a first
group of data, the first group of data being expressed in a first
format; computer readable program code configured to
receive a second group of data, the second group of data being
expressed in a second format, the second format being difter-
ent from the first format; computer readable program code
configured to merge the first and second groups of data;
computer readable program code configured to represent the
first and second groups of data in at least one common column
via: maintaining the first and second formats; and providing a
tuple map which provides reference to the first and second
formats.

An additional aspect of the invention provides a computer
program product comprising a computer program product for
providing database support, the computer program product
comprising a computer readable storage medium having
computer readable program code embodied therewith, the
computer readable program code being executable by a com-
puter to: receive a first group of data, the first group of data
being expressed in a first format; receive a second group of
data, the second group of data being expressed in a second
format, the second format being different from the first for-
mat; merge the first and second groups of data; and represent
the first and second groups of data in at least one common
column via: maintaining the first and second formats; and
providing a tuple map which provides reference to the first
and second formats.

For a better understanding of exemplary embodiments of
the invention, together with other and further features and
advantages thereof, reference is made to the following
description, taken in conjunction with the accompanying
drawings, and the scope of the claimed embodiments of the
invention will be pointed out in the appended claims.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 depicts a column store with several column groups.
FIG. 2 provides an example of a set of different data par-
titions and a tuple map.

10

15

25

30

35

40

45

50

55

60

65

2

FIG. 3 provides an example of row-major data partitioning.

FIG. 4 sets forth a process more generally for providing
database support.

FIG. 5 illustrates a computer system.

DETAILED DESCRIPTION

It will be readily understood that the components of the
embodiments of the invention, as generally described and
illustrated in the figures herein, may be arranged and designed
in a wide variety of different configurations in addition to the
described exemplary embodiments. Thus, the following more
detailed description of the embodiments of the invention, as
represented in the figures, is not intended to limit the scope of
the embodiments of the invention, as claimed, but is merely
representative of exemplary embodiments of the invention.

Reference throughout this specification to “one embodi-
ment” or “an embodiment™ (or the like) means that a particu-
lar feature, structure, or characteristic described in connec-
tion with the embodiment is included in at least one
embodiment of the invention. Thus, appearances of the
phrases “in one embodiment” or “in an embodiment” or the
like in various places throughout this specification are not
necessarily all referring to the same embodiment.

Furthermore, the described features, structures, or charac-
teristics may be combined in any suitable manner in at least
one embodiment. In the following description, numerous spe-
cific details are provided to give a thorough understanding of
embodiments of the invention. One skilled in the relevant art
may well recognize, however, that embodiments of the inven-
tion can be practiced without at least one of the specific details
thereof, or can be practiced with other methods, components,
materials, et cetera. In other instances, well-known struc-
tures, materials, or operations are not shown or described in
detail to avoid obscuring aspects of the invention.

The description now turns to the figures. The illustrated
embodiments of the invention will be best understood by
reference to the figures. The following description is intended
only by way of example and simply illustrates certain selected
exemplary embodiments of the invention as claimed herein.

It should be noted that the flowchart and block diagrams in
the figures illustrate the architecture, functionality, and opera-
tion of possible implementations of systems, apparatuses,
methods and computer program products according to vari-
ous embodiments of the invention. In this regard, each block
in the flowchart or block diagrams may represent a module,
segment, or portion of code, which comprises at least one
executable instruction for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

Specific reference will now be made herebelow to FIGS.
1-3. It should be appreciated that the processes, arrangements
and products broadly illustrated therein can be carried out on,
or in accordance with, essentially any suitable computer sys-
tem or set of computer systems, which may, by way of an
illustrative and non-restrictive example, include a system or
server such as that indicated at 12' in FIG. 5. In accordance

US 9,058,344 B2

3

with an example embodiment, most if not all of the process
steps, components and outputs discussed with respect to
FIGS.1-3 can be performed or utilized by way of'a processing
unit or units and system memory such as those indicated,
respectively, at 16' and 28' in FIG. 5, whether on a server
computer, a client computer, a node computer in a distributed
network, or any combination thereof.

In accordance with at least one embodiment of the inven-
tion, starting from a structured side or approach, there are
broadly contemplated herein methods that permit two relax-
ations of structure that do not sacrifice performance. These
relaxations include a capability for an attribute to have data of
multiple data types (e.g., as may be employed in SQL lan-
guage, DECIMAL(3,2), DECIMAL(4,2), INTEGER), so
that users need not specify the data type up front, as well as a
capability for an attribute to be very sparse (i.e., have a large
fraction of NULL values), without affecting compression or
query speed. Particularly, the latter (“sparseness” capability)
allows the database to support very wide schemas, e.g., poten-
tially with thousands of attributes, of which only some would
be non-null in each record, without losing query or compres-
sion efficiency.

Generally, it can be noted that SQL. DBMSs (database
management systems) have a rigid type system, in which the
database administrator (DBA) has to specify the detailed data
type for every column up front when the database is created.
Once a data type has been chosen, it is very difficult to change
afterwards, so the DBA usually must anticipate all future
usages. As such, DBAs can err on the side of caution and pick
very conservative types, but this then runs the risk of causing
space and time inefficiency (e.g., excessive precision/scale
DECIMALS, long strings, or using variable-length strings,
even if at that time all usages need only fixed-length strings,
etc). Further, such “conservative picking” can prove to be a
tricky task for large schemas, especially for numeric types.
The DBA must usually therefore choose proactively between
various types, e.g., INTEGER, FLOAT, DECIMAL, or DEC-
FLOAT, and—if DECIMAI—the scale and precision. Simi-
larly, for TIMESTAMP types, a DBA normally has to predict
whether accuracy is needed to seconds, or microseconds, or
even to a smaller scale. These predictive tasks thus can con-
tribute to a heightened difficulty-of-use and slower time-to-
value of a DBMS.

As such, it is additionally recognized that, over time, due to
events such as mergers and acquisitions, an initial design
occasionally becomes a problem. (The events could be of a
large scale, such as companies or concerns that are combining
that then have to combine databases on a large scale, or could
be of a smaller scale. In the latter case, there could be to start
a database initially intended for a very narrow application,
which then expands its scope at a later time.) For instance, if
a data warehouse declares a column as INTEGER, but a
newly acquired unit uses a DECIMAL for that column, a
challenge can easily be presented if that unit’s database must
be merged into the warehouse. Current solutions tend to be
problematic for a variety of reasons.

In accordance with at least one embodiment of the inven-
tion, there is broadly contemplated herein an arrangement
which supports heterogeneous types for the same column
within the same table of a DBMS. At the same time, the
solution clusters the data by type, so that in the data format
there are long runs of homogenous types, thereby not
adversely affecting query efficiency.

As such, in accordance with at least one embodiment of the
invention, two models of flexible types are broadly contem-
plated. A first model involves type flexibility within each
basic type. More particularly, the DBA can specify, by way of

20

25

35

40

45

55

4

illustrative examples, DECIMAL instead of DECIMAL
(prec, scale), GENERAL_INTEGER instead of SMALL-
INT/INT/BIGINT and STRING instead of CHAR(N) or
VARCHAR(N). A second model involves type flexibility
across numeric types. Here, by way of illustrative examples,
the DBA can specify EXACT_NUMBER if SMALLINT/
INT/BIGINT/DECIMAL is desired, and APPROX_NUM-
BER if REAL/DOUBLE/DECFLOAT is desired. This
requires the application to chose custom query semantics,
because the rules for inferring types in SQL vary by the data
type. In contrast to the first model, in which SQL semantics
can be applied directly, the second model requires the appli-
cation to pick a consistent type inference rule for SQL expres-
sions. Embodiments of the present invention can broadly
encompass either or both of these “first” and “second” mod-
els.

In accordance with at least one embodiment of the inven-
tion, every value for a flexible-type column is stored using the
smallest type that will fit it. Ifa DECIMAL value, the “small-
est type” would be represented by the minimum precision or
scale needed to avoid information loss. If an INTEGER value,
the “smallest type” would be represented by the smallest size
INTEGER type that will hold this value (which itself would
be subject to the rules of the DBMS; typically the only sup-
ported sizes tend to be 16,32, and 64 bits long). NULL values
are assigned to the smallest-size type among the flexible types
supported for that column (e.g., SMALLINT, for a GENER-
AL_INTEGER column). Ifthe input data for a column is very
diverse, the data can also be coarsified into a small number of
allowed types, as configured by the user.

Generally, embodiments of the invention address a chal-
lenge as to how to support such multiple representations
within each column while maintaining runs of fixed-length
values, for query processing efficiency and compression effi-
ciency, and to allow infrastructure such as indexes to apply to
the column. As such, there are broadly proposed herein two
data formats to address this challenge. The first applies to
databases that store data in column-major fashion (which are
exploited by most newer DBMSs intended for read-mostly
analytic queries, and also by many DBMSs storing semi-
structured data). The second applies towards databases that
store data in row-major fashion (which are utilized by most
traditional DBMSs intended primarily for transaction pro-
cessing).

In accordance with at least one embodiment of the inven-
tion, intra-block partitioning is applied to column-major data-
bases. As such, in a column-major database, each page holds
values for only one column (or a small number thereof, called
column groups). A crucial property in such a “column store”
is that all columns are laid out in the same order: this is what
allows records to be “stitched back” together without ineffi-
ciently having to store a row identifier with each value. FIG.
1 depicts a typical column store 100 with several column
groups. Column groups 1 and 5 (indicated at 101 and 105,
respectively) are shown to contain two columns each, while
column groups 2 through 4 (indicated at 102 through 104,
respectively) are shown to contain one column each. As
shown in FIG. 1, the columns are logically in the same order,
asindicated by the set of tuple-sequence numbers (TSNs) 107
at the left. Rows of each column are presumed to have a
one-to-one correspondence with one another, and such cor-
respondence defines thereby defines rows of the table. (For
instance, in FIG. 1, a row is constituted, at least in part, by the
grey-shaded cells corresponding to tuple-sequence number
(TSN)9.)

As broadly contemplated herein, in accordance with at
least one embodiment of the invention, this common ordering

US 9,058,344 B2

5

across columns—that is, an original ordering of all tuples—is
essentially violated when tuples are partitioned into separate
blocks. A tuple map addresses this challenge. Particularly,
within each block, column values could be partitioned in
accordance with data type; in other words, data correspond-
ing to one particular type will be present in one block while
data corresponding to another particular type will be present
in another block. This partitioning is temporarily “stable”
merely in the sense that, within each partition, values are
stored with respect to each other in a relative order that
corresponds to their original relative ordering. Thus, as an
illustrative example, values that were 2" and 4” in the origi-
nal order, and which are of a common data type, could then be
ordered 1¥ and 2", respectively, once in a partitioned block
corresponding to that data type. Accordingly, their relative
order of these values would be maintained once values cor-
responding to one or more other data types (which may have
been preceding, intervening or following in the original
order) are removed (i.e., assigned to one or more other parti-
tioned blocks). Consequently, when there is a need to stitch a
record back together from the partitioned blocks, the original
(pre-partitioned) ordering of the values will have been
undone and, without corrective measures, lost. Thus, a tuple
map, as broadly contemplated herein, is maintained to indi-
cate which partition each tuple (or value) belongs to while
still maintaining a record or “memory” of the original order-
ing of all (non-partitioned) tuples or values.

In accordance with at least one embodiment of the inven-
tion, the aforementioned tuple map is an array that takes up
log (# of partitions) bits per column, and is stored in the
original record order (i.e., it is not partitioned). FIG. 2 pro-
vides an example of a set 209 of different data partitions and
a tuple map. Particularly, FIG. 2 shows partitions 211 and
213, respectively, based on DECIMAL(2,1) and based on
DECIMAL(4,2), and also shows a tuple map 215. Thus, while
the original data block (shown separately at 208) contains
values 3.2,23.32,4.7,1.1,34.37,31.31, -92.02, -2.0, 40.00,
(which, for instance, can have come about from a merging of
two different databases that express numbers in different
manners), the two partitions 211/213 represent a splitting of
the block, and values a and b in the tuple map 215 refer to the
first and second partitions, 211 and 213, respectively. One or
two bits are usually sufficient for the tuple map entries, when
the block holds only a small number of distinct partitions.

In accordance with at least one embodiment of the inven-
tion, the second approach, applicable to row-major databases,
is to partition a data table by data type. Here, a cross-product
is taken of all the (coarsified) data types encountered in all the
flexible type columns, and a separate partition is formed for
each element of this cross-product. Thus, each partition of the
table has records of homogeneous type. The size of the cross-
product can be limited by combining many small partitions
into a single partition, such that columns in this partition are
of a data type that represents the coarsification of the corre-
sponding data types in the small partitions that were com-
bined.

FIG. 3 shows an illustrative example of row-major parti-
tioning, in the context of at least one embodiment of the
present invention. Shown are four different partitions 317,
319, 321 and 323, with respect to two columns (“Column A”
and “Column B”). Thus, each partition presents two different
data types, as follows:

in partition 317, Column A is DECIMAL(7.4) and Column

B is DECIMAL(2,1);
in partition 319, Column A is INTEGER and Column B is
DECIMAL(2,1);

5

10

15

20

25

30

35

40

45

50

55

60

65

6
in partition 321, Column A is INTEGER and Column B is
DECIMAL(4,2); and
in partition 319, Column A is DECIMAL(7,4) and Column
B is DECIMAL(4,2).

Generally, in the context of at least one embodiment of the
present invention, the data format can have crucial implica-
tions for the performance of query operations over that for-
mat. In most databases, some query operations are applied
directly on the data in its underlying data format, as part of the
data access operators (in the literature, this is called “pushing
down” operations). Typically, predicates that filter records of
the table are applied this way, either using indexes or via table
scans.

A significant disadvantage of conventional solutions, such
as using a view that coalesces multiple types, is that they often
disable such pushed-down operations (inasmuch as pushed-
down operations can be significantly more efficient than non-
pushed-down operations). In contrast, in accordance with at
least one embodiment of the invention, operations that are
performed on a single column (e.g., predicate evaluation) are
pushed down into each partition. The operation is performed
according to the rules of that partition’s data type. So, if a
column has some DECIMAL(4,2) values and some INTE-
GER values, and the predicate is “column>43.234", then over
the tuples that have DECIMAL values, the predicate is
applied on DECIMALSs. Over tuples that have INTEGER
values, the predicate would be applied as “column>43”.
(“Column>43.234” and “column>43", as discussed here, are
merely illustrative examples. In general, for an operation of
the form {<column> <operator> <constant>}, the constant is
rounded to a value in the data type of the partition being
operated on.)

In accordance with at least one embodiment of the inven-
tion, pushed-down predicate evaluation is very helpful
because it allows indexes to be used to apply predicates. Since
each partition has a different data type, each will typically
have a separate index. (It should be noted that methods in
accordance with at least one embodiment of the invention do
not require this; the same index could point to records with
different data types for the index column, but this complicates
the index design.) The predicate is applied separately on each
partition using any indexes available on that partition. The
query optimizer chooses the table access method separately
for each partition.

Generally, in the context of at least one embodiment of the
invention, operations that involve multiple columns can
require that multiple columns from a table be brought
together. The semantics of the operation is defined in terms of
the data type of the columns involved, so we need a single
canonical data type for that column. Thus, in accordance with
at least one embodiment of the invention, there is maintained,
in the catalog, for each flexible type column, the running
“max type” to which all values of that column must be cast
before applying SQL operations. For instance, by way of an
illustrative example, if a column contains DECIMAL(10,2)
and DECIMAL(11,2), and this column must participate in an
addition (+) operation with another column, the max type is
DECIMAI(11,2). The table access operator (index or scan)
casts its output to this max type. So, for example, when doing
a join between two tables whose join columns are of INTE-
GER type, the join columns are converted to the largest INTE-
GER precision needed to hold the values currently in the
corresponding tables.

It should be understood that essentially any suitable com-
puting device may be employed in accordance with at least
one embodiment of the invention. As such, mobile phones,

US 9,058,344 B2

7

including smart phones, may easily incorporate arrangements
such as those described and illustrated hereabove with respect
to FIGS. 1-3.

FIG. 4 sets forth a process more generally for providing
database support, in accordance with at least one embodiment
of the invention. It should be appreciated that a process such
as that broadly illustrated in FIG. 5 can be carried out on
essentially any suitable computer system or set of computer
systems, which may, by way of an illustrative and non-restric-
tive example, include a system such as that indicated at 12' in
FIG. 5. In accordance with an example embodiment, most if
not all of the process steps discussed with respect to FIG. 4
can be performed by way of a processing unit or units and
system memory such as those indicated, respectively, at 16'
and 28'in FIG. 5.

As shown in FIG. 4, in accordance with at least one
embodiment of the invention, a first group of data are received
(450), the first group of data being expressed in a first format,
and a second group of data are received (452), the second
group of data being expressed in a second format, the second
format being different from the first format. The first and
second groups of data are merged (454), and are represented
in at least one common column (456). Such representing
includes: maintaining the first and second formats (458); and
providing a tuple map which provides reference to the first
and second formats (460).

Referring now to FIG. 5, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10' is
only one example of a suitable cloud computing node and is
notintended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described
herein. Regardless, cloud computing node 10" is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove. In accordance with embodiments of
the invention, computing node 10' may not necessarily even
be part of a cloud network but instead could be part of another
type of distributed or other network, or could represent a
stand-alone node. For the purposes of discussion and illustra-
tion, however, node 10' is variously referred to herein as a
“cloud computing node”.

In cloud computing node 10' there is a computer system/
server 12', which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 12' include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12' may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12' may be prac-
ticed in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media, including memory storage devices.

10

15

20

25

30

35

40

45

50

55

60

65

8

As shown in FIG. 5, computer system/server 12' in cloud
computing node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12' may include, but are not limited to, at least one
processor or processing unit 16, a system memory 28', and a
bus 18' that couples various system components including
system memory 28' to processor 16'.

Bus 18' represents at least one of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 12' typically includes a variety of
computer system readable media. Such media may be any
available media that are accessible by computer system/
server 12', and includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28' can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30' and/or cache memory 32'. Computer
system/server 12' may further include other removable/non-
removable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34' can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 18' by at least one data media interface. As will be further
depicted and described below, memory 28' may include at
least one program product having a set (e.g., at least one) of
program modules that are configured to carry out the func-
tions of embodiments of the invention.

Program/utility 40', having a set (at least one) of program
modules 42', may be stored in memory 28' (by way of
example, and not limitation), as well as an operating system,
at least one application program, other program modules, and
program data. Each of the operating systems, at least one
application program, other program modules, and program
data or some combination thereof, may include an implemen-
tation of a networking environment. Program modules 42'
generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 12' may also communicate with at
least one external device 14' such as a keyboard, a pointing
device, a display 24/, etc.; at least one device that enables a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter systeny/server 12' to communicate with at least one
other computing device. Such communication can occur via
1/O interfaces 22'. Still yet, computer system/server 12' can
communicate with at least one network such as a local area
network (LAN), a general wide area network (WAN), and/or
a public network (e.g., the Internet) via network adapter 20'.
As depicted, network adapter 20' communicates with the
other components of computer system/server 12' via bus 18'.
It should be understood that although not shown, other hard-
ware and/or software components could be used in conjunc-
tion with computer system/server 12'. Examples include, but
are not limited to: microcode, device drivers, redundant pro-

US 9,058,344 B2

9

cessing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

It should be noted that aspects of the invention may be
embodied as a system, method or computer program product.
Accordingly, aspects of the invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” Furthermore, aspects of the
invention may take the form of a computer program product
embodied in at least one computer-readable medium having
computer-readable program code embodied thereon.

Any combination of one or more computer-readable media
may be utilized. The computer-readable medium may be a
computer-readable signal medium or a computer-readable
storage medium. A computer-readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device, or any suitable combination of the fore-
going. More specific examples (a non-exhaustive list) of the
computer-readable storage medium would include the fol-
lowing: an electrical connection having at least one wire, a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer-readable storage
medium may be any tangible medium that can contain, or
store, a program for use by, or in connection with, an instruc-
tion execution system, apparatus, or device.

A computer-readable signal medium may include a propa-
gated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter-readable signal medium may be any computer-readable
medium that is not a computer-readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer-readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wire line, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the invention may be written in any combination of
at least one programming language, including an object ori-
ented programming language such as Java®, Smalltalk, C++
or the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user’s computer (device), partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer, or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the invention are described herein with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems) and computer program products. It

30

35

40

45

10

will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer-readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer-readable medium produce
an article of manufacture. Such an article of manufacture can
include instructions which implement the function/act speci-
fied in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

This disclosure has been presented for purposes of illus-
tration and description but is not intended to be exhaustive or
limiting. Many modifications and variations will be apparent
to those of ordinary skill in the art. The embodiments were
chosen and described in order to explain principles and prac-
tical application, and to enable others of ordinary skill in the
art to understand the disclosure.

Although illustrative embodiments of the invention have
been described herein with reference to the accompanying
drawings, it is to be understood that the embodiments of the
invention are not limited to those precise embodiments, and
that various other changes and modifications may be affected
therein by one skilled in the art without departing from the
scope or spirit of the disclosure.

What is claimed is:

1. A method comprising:

receiving a first group of data, the first group of data being
expressed in a first format;

receiving a second group of data, the second group of data
being expressed in a second format, the second format
being different from the first format;

merging the first and second groups of data;

said merging comprises providing an order of data values
which includes values from the first group of data and
values from the second group of data;

partitioning the merged data into first and second blocks;

said partitioning comprising storing the first group of data
in the first block and storing the second group of data in
the second block; and

representing the first and second groups of data in at least
one common column;

said representing comprising:

maintaining the first and second formats; and

providing a tuple map which provides reference to the first
and second formats, the tuple map comprising a data
structure which provides reference to values from the

US 9,058,344 B2

11

first group of data and to values from the second group of
data, and in an order corresponding to the merged order
of data values.

2. The method according to claim 1, wherein the merged
data are represented in column-major fashion.

3. The method according to claim 2, wherein:

the data structure of the tuple map comprises identifiers for

the first and second groups of data; and

the identifiers for the first and second groups of data are

disposed adjacent to and interspersed with one another.

4. The method according to claim 1, wherein:

the merged data are contained in rows and columns; and

the rows are partitioned by way of a cross-product of for-

mats corresponding to each of the columns, the formats
comprising the first and second formats.

5. The method according to claim 1, wherein said repre-
senting comprises partitioning the data with respect to the
first and second formats.

6. The method according to claim 1, where the first and
second formats correspond to different data types for values
from a common column.

7. The method according to claim 1, where the first and
second formats correspond to null and non-null values for
values from a common column.

8. The method according to claim 1, wherein said receiving
of a first group of data comprises receiving the first group of
data from a first database.

9. The method according to claim 8, wherein said receiving
of a second group of data comprises receiving the second
group of data from a second database.

10. An apparatus comprising:

at least one processor; and

a computer readable storage medium having computer

readable program code embodied therewith and execut-
able by the at least one processor, the computer readable
program code comprising:

computer readable program code configured to receive a

first group of data, the first group of data being expressed
in a first format;

computer readable program code configured to receive a

second group of data, the second group of data being
expressed in a second format, the second format being
different from the first format;

computer readable program code configured to merge the

first and second groups of data;

wherein the merging comprises providing an order of data

values which includes values from the first group of data
and values from the second group of data;

computer readable program code configured to partition

the merged data into first and second blocks;

wherein the partitioning comprises storing the first group

of data in the first block and storing the second group of
data in the second block; and

computer readable program code configured to represent

the first and second groups of data in at least one com-
mon column via:

10

30

40

45

50

12

maintaining the first and second formats; and

providing a tuple map which provides reference to the first
and second formats the tuple map comprising a data
structure which provides reference to values from the
first group of data and to values from the second group of
data, and in an order corresponding to the merged order
of data values.

11. A computer program product for providing database
support, said computer program product comprising a non-
transitory computer readable storage medium having com-
puter readable program code embodied therewith, said com-
puter readable program code being executable by a computer
to:

receive a first group of data, the first group of data being

expressed in a first format;

receive a second group of data, the second group of data

being expressed in a second format, the second format
being different from the first format;

merge the first and second groups of data;

wherein the merging comprises providing an order of data

values which includes values from the first group of data
and values from the second group of data;

partition the merged data into first and second blocks;

wherein the partitioning comprises storing the first group

of data in the first block and storing the second group of
data in the second block; and

represent the first and second groups of data in at least one

common column via:

maintaining the first and second formats; and

providing a tuple map which provides reference to the first

and second formats the tuple map comprising a data
structure which provides reference to values from the
first group of data and to values from the second group of
data, and in an order corresponding to the merged order
of data values.

12. The computer program product according to claim 11,
wherein the merged data are represented in column-major
fashion.

13. The computer program product according to claim 11,
wherein:

the merged data are contained in rows and columns; and

the rows are partitioned by way of a cross-product of for-

mats corresponding to each of the columns, the formats
comprising the first and second formats.

14. The computer program product according to claim 11,
wherein said computer readable program code is further
executable by the computer to partition the data with respect
to the first and second formats.

15. The computer program product according to claim 11,
where the first and second formats correspond to different
data types for values from a common column.

16. The computer program product according to claim 11,
where the first and second formats correspond to null and
non-null values for values from a common column.

#* #* #* #* #*

